Hard Problems, for Fun!

Using Maxwell equations express $\left.\frac{\partial S}{\partial V}\right)_{T}$ and $\left.\frac{\partial V}{\partial S}\right)_{P}$ and $\left.\frac{\partial P}{\partial S}\right)_{V}$ and $\left.\frac{\partial S}{\partial P}\right)_{T}$ in terms of heat capacities, expansion coefficient α (ie. $\left.\alpha=\frac{1}{V} \frac{\partial V}{\partial T}\right)_{P}$) and isothermal compressibility $\left.\kappa_{\mathrm{T}}\left(\text { ie. . } \kappa=-\frac{1}{V} \frac{\partial V}{\partial P}\right)_{T}\right)$.

We will use the Euler Chain Relation quite a bit (you know what that is!). Ok the Euler Chain formula is

Meet my new kitten
Charlie! $\left.\frac{\partial x}{\partial y} \int_{z} \frac{\partial y}{\partial z} \int_{x} \frac{\partial z}{\partial x}\right)_{y}=-1$ and therefore $\left.\left.\frac{\partial x}{\partial y}\right)_{z}=-\frac{\partial z}{\partial y} \int_{x} \frac{\partial x}{\partial z}\right)_{y}$

1. For the first one: $\left.\left.\frac{\partial S}{\partial V}\right)_{T}=\frac{\partial P}{\partial T}\right)_{V}$ is a Maxwell equation. From there we use the Euler Chain Formula to get: $\left.\left.\left.\left.\frac{\partial S}{\partial V}\right)_{T}=\frac{\partial P}{\partial T}\right)_{V}=-\frac{\partial V}{\partial T}\right)_{P} \frac{\partial P}{\partial V}\right)_{T}$. Knowing that $\left.\alpha=\frac{1}{V} \frac{\partial V}{\partial T}\right)_{P}$ and thus $\left.\alpha V=\frac{\partial V}{\partial T}\right)_{P}$ we can reduce this to $\left.\left.\frac{\partial S}{\partial V}\right)_{T}=-\alpha V \frac{\partial P}{\partial V}\right)_{T}$ Now we also know that $\left.\kappa=-\frac{1}{V} \frac{\partial V}{\partial P}\right)_{T}$ so $\left.\frac{1}{\kappa}=-V \frac{\partial P}{\partial V}\right)_{T}$ so $\left.\frac{\partial S}{\partial V}\right)_{T}=\frac{\alpha}{\kappa}$.
2. Next is $\left.\frac{\partial V}{\partial S}\right)_{P}$. Starting with: $\left.\left.\frac{\partial V}{\partial S}\right)_{P}=\frac{\partial T}{\partial P}\right)_{S}$ from a Maxwell Relation. Now the Euler Chain Formula: $\left.\left.\left.\left.\frac{\partial V}{\partial S}\right)_{P}=\frac{\partial T}{\partial P}\right)_{S}=-\frac{\partial S}{\partial P}\right)_{T} \frac{\partial T}{\partial S}\right)_{P}$ Knowing that $\partial H=T \partial S+V \partial P$ therefore the partial with respect to T at const. P gives: $\left.\left.\left.\left.C_{P}=\frac{\partial H}{\partial T}\right)_{P}=T \frac{\partial S}{\partial T}\right)_{P}+V \frac{\partial P}{\partial T}\right)_{P}=T \frac{\partial S}{\partial T}\right)_{P}$ and therefore $\left.\frac{T}{C_{P}}=\frac{\partial T}{\partial S}\right)_{P}$ we can make $\left.\left.\frac{\partial V}{\partial S}\right)_{P}=-\frac{\partial S}{\partial P}\right)_{T} \frac{T}{C_{P}}$. Now to get rid of the first entropy term use another Maxwell Equation $\left.\left.-\frac{\partial S}{\partial P}\right)_{T}=\frac{\partial V}{\partial T}\right)_{P}$ leaves us with $\left.\left.\frac{\partial V}{\partial S}\right)_{P}=\frac{\partial V}{\partial T}\right)_{P} \frac{T}{C_{P}}$ Knowing that $\left.\alpha=\frac{1}{V} \frac{\partial V}{\partial T}\right)_{P}$ we can reduce this to $\left.\frac{\partial V}{\partial S}\right)_{P}=V \alpha \frac{T}{C_{P}}$.
3. Gimme more Dr. Chicken! Ok $\left.\frac{\partial P}{\partial S}\right)_{V}$ is equal to $\left.-\frac{\partial T}{\partial V}\right)_{S}$ via Maxwell Equation. Next is the Euler Chain Formula: $\left.\left.\left.\left.\frac{\partial P}{\partial S}\right)_{V}=-\frac{\partial T}{\partial V}\right)_{S}=\frac{\partial S}{\partial V}\right)_{T} \frac{\partial T}{\partial S}\right)_{V}$ Knowing that $\partial U=T \partial S-P \partial V$ therefore the partial with respect to T at const. V gives: $\left.\left.\left.\left.C_{V}=\frac{\partial U}{\partial T}\right)_{V}=T \frac{\partial S}{\partial T}\right)_{V}-P \frac{\partial V}{\partial T}\right)_{V}=T \frac{\partial S}{\partial T}\right)_{V}$ and
therefore $\left.\frac{T}{C_{V}}=\frac{\partial T}{\partial S}\right)_{V}$. Now we have $\left.\left.\frac{\partial P}{\partial S}\right)_{V}=\frac{\partial S}{\partial V}\right)_{T} \frac{T}{C_{V}}$. Last step is to recognize that we already figured out that $\left.\frac{\partial S}{\partial V}\right)_{T}=\frac{\alpha}{\kappa}$ in the first part of this Scratch so we get $\left.\frac{\partial P}{\partial S}\right)_{V}=\frac{\alpha}{\kappa} \frac{T}{C_{V}}$.
4. One more then its time for beddy-bye. $\left.\frac{\partial S}{\partial P}\right)_{T}$ is equal to $\left.-\frac{\partial V}{\partial T}\right)_{P}$ via a Maxwell Equation. Next is the Euler Chain Formula: $\left.\left.\left.\left.\frac{\partial S}{\partial P}\right)_{T}=-\frac{\partial V}{\partial T}\right)_{P}=\frac{\partial P}{\partial T}\right)_{V} \frac{\partial V}{\partial P}\right)_{T}$ Knowing that $\left.\kappa=-\frac{1}{V} \frac{\partial V}{\partial P}\right)_{T}$ gives: $\left.\left.\frac{\partial S}{\partial P}\right)_{T}=-\frac{\partial P}{\partial T}\right)_{V} V \kappa$. Last step is to recognize that we solved for $\left.\frac{\partial P}{\partial T}\right)_{V}$ in the first problem which is $\left.\frac{\partial P}{\partial T}\right)_{V}=\frac{\alpha}{\kappa}$ so putting this all together gives $\left.\frac{\partial S}{\partial P}\right)_{T}=-\frac{\alpha}{\kappa} V \kappa=-\alpha V$.
