Hard Problems, for Fun!

Using Maxwell equations express $\frac{\partial S}{\partial V}\Big|_T$ and $\frac{\partial V}{\partial S}\Big|_P$ and $\frac{\partial P}{\partial S}\Big|_V$ and $\frac{\partial S}{\partial P}\Big|_T$ in terms of heat capacities, expansion coefficient α (i.e. $\alpha = \frac{1}{V}\frac{\partial V}{\partial T}\Big|_P$) and isothermal compressibility κ_T (i.e. $\kappa = -\frac{1}{V}\frac{\partial V}{\partial P}\Big|_T$).

We will use the Euler Chain Relation quite a bit (you know what that is!). Ok the Euler Chain formula is

 $\frac{\partial x}{\partial y} \int_{z} \frac{\partial y}{\partial z} \int_{x} \frac{\partial z}{\partial x} \int_{y} = -1$ and therefore $\frac{\partial x}{\partial y} \int_{z} = -\frac{\partial z}{\partial y} \int_{x} \frac{\partial x}{\partial z} \int_{y}$

1. For the first one: $\frac{\partial S}{\partial V}\Big|_{T} = \frac{\partial P}{\partial T}\Big|_{V}$ is a Maxwell equation. From there we use the Euler Chain Formula to get: $\frac{\partial S}{\partial V}\Big|_{T} = \frac{\partial P}{\partial T}\Big|_{V} = -\frac{\partial V}{\partial T}\Big|_{P}\frac{\partial P}{\partial V}\Big|_{T}$. Knowing that $\alpha = \frac{1}{V}\frac{\partial V}{\partial T}\Big|_{P}$ and thus $\alpha V = \frac{\partial V}{\partial T}\Big|_{P}$ we can reduce this to $\frac{\partial S}{\partial V}\Big|_{T} = -\alpha V\frac{\partial P}{\partial V}\Big|_{T}$ Now we also know that $\kappa = -\frac{1}{V}\frac{\partial V}{\partial P}\Big|_{T}$ so $\frac{1}{\kappa} = -V\frac{\partial P}{\partial V}\Big|_{T}$ so $\frac{\partial S}{\partial V}\Big|_{T} = \frac{\alpha}{\kappa}$.

2. Next is $\frac{\partial V}{\partial S}\Big|_p$. Starting with: $\frac{\partial V}{\partial S}\Big|_p = \frac{\partial T}{\partial P}\Big|_S$ from a Maxwell Relation. Now the Euler Chain Formula: $\frac{\partial V}{\partial S}\Big|_p = \frac{\partial T}{\partial P}\Big|_S = -\frac{\partial S}{\partial P}\Big|_T \frac{\partial T}{\partial S}\Big|_p$ Knowing that $\partial H = T\partial S + V\partial P$ therefore the partial with respect to T at const. P gives: $C_P = \frac{\partial H}{\partial T}\Big|_p = T\frac{\partial S}{\partial T}\Big|_p + V\frac{\partial P}{\partial T}\Big|_p = T\frac{\partial S}{\partial T}\Big|_p$ and therefore $\frac{T}{C_P} = \frac{\partial T}{\partial S}\Big|_p$ we can make $\frac{\partial V}{\partial S}\Big|_p = -\frac{\partial S}{\partial P}\Big|_T \frac{T}{C_P}$. Now to get rid of the first entropy term use another Maxwell Equation $-\frac{\partial S}{\partial P}\Big|_T = \frac{\partial V}{\partial T}\Big|_p$ leaves us with $\frac{\partial V}{\partial S}\Big|_p = \frac{\partial V}{\partial T}\Big|_p \frac{T}{C_P}$ Knowing that $\alpha = \frac{1}{V}\frac{\partial V}{\partial T}\Big|_p$ we can reduce this to $\frac{\partial V}{\partial S}\Big|_p = V\alpha \frac{T}{C_P}$.

3. Gimme more Dr. Chicken! Ok $\frac{\partial P}{\partial S}\Big|_V$ is equal to $-\frac{\partial T}{\partial V}\Big|_S$ via Maxwell Equation. Next is the Euler Chain Formula: $\frac{\partial P}{\partial S}\Big|_V = -\frac{\partial T}{\partial V}\Big|_S = \frac{\partial S}{\partial V}\Big|_T \frac{\partial T}{\partial S}\Big|_V$ Knowing that $\partial U = T\partial S - P\partial V$ therefore the partial with respect to T at const. V gives: $C_V = \frac{\partial U}{\partial T}\Big|_V = T\frac{\partial S}{\partial T}\Big|_V = T\frac{\partial S}{\partial T}\Big|_V$ and therefore $\frac{T}{C_V} = \frac{\partial T}{\partial S} \Big|_V$. Now we have $\frac{\partial P}{\partial S} \Big|_V = \frac{\partial S}{\partial V} \Big|_T \frac{T}{C_V}$. Last step is to recognize that we already figured out that $\frac{\partial S}{\partial V} \Big|_T = \frac{\alpha}{\kappa}$ in the first part of this Scratch so we get $\frac{\partial P}{\partial S} \Big|_V = \frac{\alpha}{\kappa} \frac{T}{C_V}$.

4. One more then its time for beddy-bye. $\frac{\partial S}{\partial P}\Big|_T$ is equal to $-\frac{\partial V}{\partial T}\Big|_P$ via a Maxwell Equation. Next is the Euler Chain Formula: $\frac{\partial S}{\partial P}\Big|_T = -\frac{\partial V}{\partial T}\Big|_P = \frac{\partial P}{\partial T}\Big|_V \frac{\partial V}{\partial P}\Big|_T$ Knowing that $\kappa = -\frac{1}{V}\frac{\partial V}{\partial P}\Big|_T$ gives: $\frac{\partial S}{\partial P}\Big|_T = -\frac{\partial P}{\partial T}\Big|_V V\kappa$. Last step is to recognize that we solved for $\frac{\partial P}{\partial T}\Big|_V$ in the first problem which is $\frac{\partial P}{\partial T}\Big|_V = \frac{\alpha}{\kappa}$ so putting this all together gives $\frac{\partial S}{\partial P}\Big|_T = -\frac{\alpha}{\kappa}V\kappa = -\alpha V$.