## Legendre Transforms and Maxwell's Equations

In general $\partial f=\left(\frac{\partial f}{\partial x}\right)_{y} \partial x+\left(\frac{\partial f}{\partial y}\right)_{x} \partial y$ for which the Euler Criteria is $\left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right)_{x}=\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right)_{y}$ we can derive almost everything we have done in class. Remember these two things are your pretty much set.

Starting from: $\partial U=\left(\frac{\partial U}{\partial S}\right)_{V} \partial S+\left(\frac{\partial U}{\partial V}\right)_{S} \partial V=T \partial S-P \partial V$ and using the Euler Criteria we get the first Maxwell equation: $\left(\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial S}\right)_{V}\right)_{S}=\left(\frac{\partial}{\partial S}\left(\frac{\partial U}{\partial V}\right)_{S}\right)_{V}$ Plugging in the known variables $\left(\frac{\partial U}{\partial S}\right)_{V}=T$ and $\left(\frac{\partial U}{\partial V}\right)_{S}=-P$ gives us $\left(\frac{\partial T}{\partial V}\right)_{S}=\left(\frac{-\partial P}{\partial S}\right)_{V}$

Now for H which is $\mathrm{U}+\mathrm{PV}$. Now the Legendre transform gives us:
$\partial H=T \partial S-P \partial V+P \partial V+V \partial P=T \partial S+V \partial P$ The first two terms are from $\delta U$ and the last two terms are from taking the differential of +PV . This shows that H is a function of S and P , and we are set up to proceed as before.
Starting from: $\partial H=\left(\frac{\partial H}{\partial S}\right)_{P} \partial S+\left(\frac{\partial H}{\partial P}\right)_{S} \partial P=T \partial S+V \partial P$ and using the Euler Criteria we get the second Maxwell equation: $\left(\frac{\partial}{\partial P}\left(\frac{\partial H}{\partial S}\right)_{P}\right)_{S}=\left(\frac{\partial}{\partial S}\left(\frac{\partial H}{\partial P}\right)_{S}\right)_{P}$ Plugging in the known variables $\left(\frac{\partial H}{\partial S}\right)_{P}=T$ and $\left(\frac{\partial H}{\partial P}\right)_{S}=V$ gives us $\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}$

Now for A which is U-TS. The Legendre transform gives us:
$\partial A=T \partial S-P \partial V-T \partial S-S \partial T=-S \partial T-P \partial V$. The first two terms are from $\delta \mathrm{U}$ and the last two terms are from taking the differential of -TS. This shows that A is a function of T and V , and we are set up to proceed as before.
Starting from: $\partial A=\left(\frac{\partial A}{\partial T}\right)_{V} \partial T+\left(\frac{\partial A}{\partial V}\right)_{T} \partial V=-S \partial T-P \partial V$ and using the Euler Criteria we get the third Maxwell equation: $\left(\frac{\partial}{\partial V}\left(\frac{\partial A}{\partial T}\right)_{V}\right)_{T}=\left(\frac{\partial}{\partial T}\left(\frac{\partial A}{\partial V}\right)_{T}\right)_{V}$ Plugging in the known variables $\left(\frac{\partial A}{\partial T}\right)_{V}=-S$ and $\left(\frac{\partial A}{\partial V}\right)_{T}=-P$ gives us $\left(\frac{-\partial S}{\partial V}\right)_{T}=\left(\frac{-\partial P}{\partial T}\right)_{V}$ which is also $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$

Now for G which is U-TS + PV, or $\mathrm{H}-\mathrm{TS}$, or $\mathrm{A}+\mathrm{PV}$. You should now in your notes do the Legendre transform to get out last Maxwell equation, which is:
$\left(\frac{-\partial S}{\partial P}\right)_{T}=\left(\frac{\partial V}{\partial T}\right)_{P}$


