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             Leg 1: Isothermal Expansion 
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       Leg 3: Isothermal  
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Carnot Cycle: 
 
Work always  adds (let it be negative or positive on its own) so the total work is: 
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Since  (Thot -Tcold)= - (Tcold-Thot) the above reduces to: 
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where I used the identity: ⎟⎟
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Since we have 4 volumes but two temperatures we can relate the two via the adiabatic 
expansion and compression by relationships as: 
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 In our case: ⎟⎟
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 which rearranges 

to: 
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Again the total work is: 
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Which using the above identity reduces to: 
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Lets see here, the change in temperature is positive, the natural log is positive, n and R 
are positive, so the negative of a bunch of positive numbers multiplied is negative. Thus, 
the Carnot Engine provides negative work only. 
 
Now we can evaluate the relationship between the maximum work done and the input 
energy. That is and only is q1, since q2 (opening the hot gases to the tailpipe) doesn’t 
require me as a person, taxpayer, and citizen to do anything (doing nothing on my way to 
nowhere in my SUV is how you can tell I am an American). So that leaves us with the 
efficiency of turning q to w as: 
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