
The Curious Case of the Adiabatic, Irreversible Expansion 
 

(ps. Benjamin Button dies at the end). 

 

Calculate the final volume, temperature, work done by 0.5 mol of a gas (Cv,m = 12.47 

J/K/mol and Cp,m = 20.8 J/K/mol) at 3 atm and 100 °C that irreversibly and adiabatically 

expands against an outside pressure of 1 atm. 

b. What is the change in U and H? 

 

Answer: 

Since P·V=n·R·T for the initial and final states, we 

have 
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1 =  (1) and 
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2 =  (2). Knowing 

that n=0.5 mol, T1=373.15 K, P1 = 3 atm = 303.975 

kPa, P2 = 1 atm = 101.325 kPa we can calculate 

from (1) that V1 = 5.103 L. Now we need to know 

the volume and temperature of the final state (T2, 

V2) to calculate all the other thermodynamic 

variables; and while P·V=n·R·T still works, we have 

a slight problem. This is because (2) has two 

unknown variables as adiabatic transitions have 

simultaneous changes in V and T. So, you cannot 

use (2) to do anything. Essentially, you have one 

equation with two unknown variables.   

 

However, nature must provide a method to deal 

with this problem. First, since ∂U = ∂q + ∂w = ∂w 

in adiabatic transitions, which is always –Pext·∂V. Also, ∂U = Cv·∂V. Thus, whether 

reversible or irreversible we know that: 

VPTCn extmv ∆⋅−=∆⋅⋅ ,  (3) 

Where the irreversible and reversible differ is in how one takes care of the external 

pressure. In the reversible case, we set Pext to n·R/V and proceed as per the last handout. 

In our case, we do the following; first, redefine (3) as: 

)()( 1212, VVPTTCn extmv −⋅−=−⋅⋅  Next, note that we can relate the final temperature to 

the final volume as: 
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, VVPT
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Cn extmv −⋅−=−⋅⋅ . The amazing thing: we have all the variables in 

this one equation defined except for V2, which we can now calculate from:  
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Solving this for V2 gives a final volume of 11.226 L. Now we can calculate T2 two 

different ways: If we use (2), we get: 

molK
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⋅⋅
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314.85.0

226.11325.101
2 = 273.6 K. Or, we 

could have used (3): VPTCn extmv ∆⋅−=∆⋅⋅ ,  which after we put in all the known 

variables is: ( ) )103.5226.11(325.10115.37347.125.0 2 LLkPaKT
molK
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which makes T2= 273.6 K!!! It’s the same no matter how we calculate it! 

 

The last thing I will do is calculate the work, which is TCn mv ∆⋅⋅ ,  = 

( ) =−⋅⋅⋅ KK
molK

Jmol 15.3736.27347.125.0 -621 J. This is also the change in internal 

energy. The change in enthalpy is then:  ∂H = ∂U + ∂(P·V) = ∂U + n·R·∂T = -621 J + 

0.5mol·8.314 J/K/mol·(273.6K -393.15K) = -1.03 kJ. 

 

 

Let’s see what we would get if the problem was a reversible expansion to a 1 atm final 

pressure. In this case, we use the adiabatic, reversible equation(s) of state: 
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 and plugging in numbers yields: 
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 After some manipulation we get: 
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= 9.86 L. Now we can get the final temperature via 
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 which yields a T2 of 

240.5 K. Likewise, the perfect gas law (2) gives 
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2 = 240.3 K, 

I’m sure the very slight difference in the temperatures are due to truncation of significant 

figures when I did this on my calculator (they are obviously the same temperature).  

Let’s calculate the work to compare it to the irreversible result. Starting with 

∂w= TCn mv ∆⋅⋅ ,  = ( ) =−⋅⋅⋅ KK
molK

Jmol 15.3733.24047.125.0 -828 J.  

Note that this is a greater negative quantity than the irreversible work (it was -621 J); this 

preserves the notion that we get the most work out (negative work) from a reversible 

system change. And how did that extra work come about? It’s because the reversible 

expansion ends up with a much colder gas, which means more internal heat was 

converted to expansion work. Think of it like this: if the change in temperature is  



wTCn mv ∂=∆⋅⋅ ,  then 
mvCn

w
T

,⋅
∂=∆ . Now since the reversible work is the most 

negative, then the reversible transition will cool the gas more compared to the irreversible 

transition.  


