Question: If the reaction: $A_{(g)} \leftrightarrow 2 B_{(g)}$ has a $\Delta G^{\circ} = 0 J$, what is ΔG , K, and the extent of the reaction at equilibrium if T = 298K and P = 1 bar?

Answer: First, at equilibrium $\Delta G = 0$ J by definition.

Now we calculate K from $\Delta G = \Delta G^{\circ} + RT \cdot \ln(K)$, where all the G's are 0 J: 0 J = 0 J + RT \cdot \ln(K) or exp(0 J/RT) = K, making K = 1 (no units). Now for the extent of the reaction: First make a table according to the reaction as so:

	А	В
Amount at equilibrium	$n - n \cdot \alpha$	$2n \cdot \alpha$
Mole fractions	$\frac{1-\alpha}{1+\alpha}$	$\frac{2\alpha}{1+\alpha}$
Partial pressures	$\frac{1-\alpha}{1+\alpha} \cdot \mathbf{P}$	$\frac{2\alpha}{1+\alpha} \cdot \mathbf{P}$

where α (the extent of the reaction) represents the loss of A. Note the total number of moles, regardless of the extent of the reaction, is $n-n \cdot \alpha + 2\alpha \cdot n = n + n \cdot \alpha$. This makes the mole fraction for $A = \frac{(1-\alpha)n}{(1+\alpha)n} = \frac{1-\alpha}{1+\alpha}$; the mole fraction of B is found in a similar manner. The partial pressures

are then the mole fractions times the total pressure P.

Now at equilibrium K = $\prod_{i} \left(\frac{P_i}{P^\circ}\right)^{u_i}$ where P_i is the partial pressure of species i. As usual, P° is is inst 1 here

just 1 bar.

K is now:
$$\frac{\left(\frac{2\alpha}{1+\alpha},\frac{P}{P^{\circ}}\right)^{2}}{\left(\frac{1-\alpha}{1+\alpha},\frac{P}{P^{\circ}}\right)}$$

Simplification gives: $K = \left(\frac{2\alpha}{1+\alpha}, \frac{P}{P^{\circ}}\right)^{2} \left(\frac{1+\alpha}{1-\alpha}, \frac{P^{\circ}}{P}\right) = \frac{4\alpha^{2}}{(1+\alpha)(1-\alpha)} \left(\frac{P}{P^{\circ}}\right)$

The neat trick is that since the pure partial pressures and total pressures are all 1 bar, all the pressures disappear:

$$\mathbf{K} = \frac{4\alpha^2}{(1+\alpha)(1-\alpha)}$$

Now since K=1, all we have to do is solve for α :

$$\frac{4\alpha^2}{(1+\alpha)(1-\alpha)} = \frac{4\alpha^2}{1-\alpha^2} = 1$$

Therefore: $1-\alpha^2 = 4\alpha^2$ or $1=5\alpha^2$, which makes $\alpha = 0.447$ or 44.7 %. Try this yourself: if the reaction was $A_{(g)} \leftrightarrow B_{(g)}$, then you would have calculated $\alpha = 0.5$.

Question: At 1 bar of pressure and at 2233 K, water has dissociated by 0.0343 % at equilibrium via:

2 $H_{2(g)} + O_{2(g)} \leftrightarrow 2 H_2O_{(g)}$. What is K, ΔG , ΔG° ?

What is ΔG , K, and ΔG° for this reaction at equilibrium? Hint: since water has dissociated so little, then the percent retained of the 2 moles of water is: (100% - 0.0343 %) = 99.9657 %

Answer: First, at equilibrium $\Delta G = 0$ J by definition.

Now first we calculate K and then ΔG° .

If you calculated everything according to the formula:

 $2 \operatorname{H}_{2(g)} + \operatorname{O}_{2(g)} \leftrightarrow 2 \operatorname{H}_2\operatorname{O}_{(g)}.$

First, make a table expressing changes in mass:

	H ₂	O_2	H ₂ O
Amount at equilibrium	$2n - 2n \cdot \alpha$	$n - \alpha \cdot n$	2n·α
Mole fractions	$\frac{2-2\alpha}{3-\alpha}$	$\frac{1-\alpha}{3-\alpha}$	$\frac{2\alpha}{3-\alpha}$
Partial pressures	$\frac{2-2\alpha}{3-\alpha} \cdot \mathbf{P}$	$\frac{1-\alpha}{3-\alpha} \cdot \mathbf{P}$	$\frac{2\alpha}{3-\alpha} \cdot \mathbf{P}$

 $\frac{2n\alpha}{(3-\alpha)n} = \frac{2\alpha}{3-\alpha}$; the other mole fractions are found in a similar manner. The partial pressures are

then the mole fractions times the total pressure P.

Now at equilibrium $K = \prod_{i} \left(\frac{P_i}{P^\circ}\right)^{v_i}$ where P_i is the partial pressure of species i. As usual, P° is just 1 bar.

just i bai.

K is now:

$$\frac{\left(\frac{2\alpha}{3-\alpha}\cdot\frac{P}{P^{\circ}}\right)^{2}}{\left(\frac{2-2\alpha}{3-\alpha}\cdot\frac{P}{P^{\circ}}\right)^{2}\cdot\left(\frac{1-\alpha}{3-\alpha}\cdot\frac{P}{P^{\circ}}\right)}$$

Simplification gives: K = $\left(\frac{2\alpha}{3-\alpha}, \frac{P}{P^{\circ}}\right)^{2} \left(\frac{3-\alpha}{2-2\alpha}, \frac{P^{\circ}}{P}\right)^{2} \left(\frac{3-\alpha}{1-\alpha}, \frac{P^{\circ}}{P}\right) = \frac{4\alpha^{2}(3-\alpha)}{(1-\alpha)(2-2\alpha)^{2}} \left(\frac{P^{\circ}}{P}\right)^{2}$

The neat trick is that since the pure partial pressures and total pressures are all 1 bar, all the pressures disappear:

$$K = \frac{4\alpha^2(3-\alpha)}{(1-\alpha)(2-2\alpha)^2}$$

Now since the reaction has gone to 0.0343 % completion, then $\alpha = 0.999657$ (note how this makes the number of moles of water close to 2 moles, which makes sense), you find : $K = 4.9536 \times 10^{10}$.

Last is ΔG° , due to the relationship $\Delta G = \Delta G^{\circ} + RT \cdot \ln(K)$, we know that: $\Delta G^{\circ} = -RT \cdot \ln(K) = -8.314 \text{ J/K/mol} \times 2233 \text{ K} \times \ln(4.9536 \times 10^{10}) = -4.572 \times 10^5 \text{ J/mol} = -457.2 \text{ kJ/mol}.$ Note a neat little fact- this reaction represents *forming two moles* of gas-phase water from its elements. If I look up ΔG° from the table, I see it is -228.6 kJ/mol, which represents the Gibb's energy to form one mole of gas phase water. Thus forming two moles would be: 2×-228.6 kJ/mol = -457.2 kJ/mol, the same number!

Note that if I had written the equation:

 $H_{2(g)}+ {}^{1}\!\!/_{2} \operatorname{O}_{2(g)} \longleftrightarrow H_{2}O_{(g)}.$

Then the table would have looked like:

	H_2	O_2	H ₂ O
Amount at equilibrium	$n - n \cdot \alpha$	$\frac{1}{2}(n-\alpha \cdot n)$	n·α
Mole fractions	$1-\alpha$	$0.5 - 0.5\alpha$	α
	$1.5 - 0.5\alpha$	$1.5 - 0.5\alpha$	$1.5 - 0.5\alpha$
Partial pressures	$\frac{1-\alpha}{1.5-0.5\alpha} \cdot P$	$\frac{0.5 - 0.5\alpha}{1.5 - 0.5\alpha} \cdot P$	$\frac{\alpha}{1.5-0.5\alpha} \cdot P$

Do the algebra, and you will see that:

$$V: \frac{\left(\frac{\alpha}{1.5-0.5\alpha}, \frac{P}{P^{\circ}}\right)}{\left(\frac{0.5-0.5\alpha}{1.5-0.5\alpha}, \frac{P}{P^{\circ}}\right)^{\frac{1}{2}} \cdot \left(\frac{1-\alpha}{1.5-0.5\alpha}, \frac{P}{P^{\circ}}\right)}$$

Simplification gives: $\mathbf{K} = \left(\frac{\alpha}{1.5 - 0.5\alpha} \cdot \frac{P}{P^{\circ}}\right) \left(\frac{1.5 - 0.5\alpha}{0.5 - 0.5\alpha} \cdot \frac{P^{\circ}}{P}\right)^{\frac{1}{2}} \left(\frac{1.5 - 0.5\alpha}{1 - \alpha} \cdot \frac{P^{\circ}}{P}\right) = \frac{\sqrt{2} \cdot \alpha (1.5 - 0.5\alpha)^{\frac{1}{2}}}{(1 - \alpha)(1 - \alpha)^{\frac{1}{2}}}$

Now when you plug in $\alpha = 0.999657$ as before, you find $K = 2.2257 \times 10^5$. Last: $\Delta G^\circ = -RT \cdot \ln(K) = -8.314 \text{ J/K/mol} \times 2233 \text{ K} \times \ln(2.2257 \times 10^5) = -2.286 \times 10^5 \text{ J/mol} = -228.6 \text{ kJ/mol}$, which is the same as ΔG° from the table for *forming 1 mole* of water vapor. **Question:** I looked up that ΔG° is -23.0 kJ/mol for the following reaction:

 $\text{ClNO}_2(g) + \text{NO}(g) \leftrightarrow \text{NO}_2(g) + \text{ClNO}(g)$

How much has this reaction proceeded if you start with n moles of both reactants, assuming the pressure is 1 bar and let's say temperature is 25 °C? Here is a hint: starting with the normal table:

tere is a mint. starting with the normal table.					
	ClNO ₂	NO	NO_2	CINO	
Amount at equilibrium	$n \cdot (1-\alpha)$	$n \cdot (1-\alpha)$	n·α	n·α	
Mole fractions	$\underline{\mathbf{n}\cdot(1-\alpha)}$	$\underline{\mathbf{n}\cdot(1-\alpha)}$	$\underline{\mathbf{n}\cdot\boldsymbol{\alpha}}$	$\underline{\mathbf{n}\cdot\boldsymbol{\alpha}}$	
	2n	2n	<u>2n</u>	2n	
Partial pressures	$\frac{(1-\alpha)}{2} \cdot P$	$\frac{(1-\alpha)}{2} \cdot P$	$\frac{\alpha}{2} \cdot P$	$\frac{\alpha}{2} \cdot P$	

where α represents the extent of the reaction. Note the total number of moles, regardless of the extent of the reaction, is 2n. Now at equilibrium $K = \prod_{i} \frac{P_{i}^{v_{i}}}{P^{ov_{i}}}$, where P_{i} is the partial pressure of species i. As usual, P^{o} is just 1 bar. K is now: $\frac{\left(\frac{\alpha}{2} \cdot \frac{P}{P^{o}}\right) \cdot \left(\frac{\alpha}{2} \cdot \frac{P}{P^{o}}\right)}{\left(\frac{(1-\alpha)}{2} \cdot \frac{P}{P^{o}}\right) \cdot \left(\frac{(1-\alpha)}{2} \cdot \frac{P}{P^{o}}\right)}$. Simplification gives:

$$\left(\frac{2}{(1-\alpha)}\cdot\frac{P^{\circ}}{P}\right)\cdot\left(\frac{2}{(1-\alpha)}\cdot\frac{P^{\circ}}{P}\right)\cdot\left(\frac{\alpha}{2}\cdot\frac{P}{P^{\circ}}\right)\cdot\left(\frac{\alpha}{2}\cdot\frac{P}{P^{\circ}}\right)=\left(\frac{4}{(1-\alpha)^{2}}\right)\cdot\left(\frac{\alpha^{2}}{4}\cdot\right)=\frac{\alpha^{2}}{(1-\alpha)^{2}}=\frac{\alpha^{2}}{1-2\alpha+\alpha^{2}}.$$
 Now when you

plug this into the expression for the Gibbs energy at equilibrium: $\ln\left(\frac{\alpha^2}{1-2\alpha+\alpha^2}\right) = \frac{-\Delta G^{\circ}}{R \cdot T}$, you

can solve for α . Hint hint: if $A\alpha^2 + B\alpha + C = 0$, then the two possible values of α are: $\frac{-B + \sqrt{B^2 - 4AC}}{2A} \text{ or } \frac{-B - \sqrt{B^2 - 4AC}}{2A}.$

Answer: Starting with: $\ln\left(\frac{\alpha^2}{1-2\alpha+\alpha^2}\right) = \frac{-\Delta G^{\circ}}{R \cdot T}$, plug in everything we know: $\ln\left(\frac{\alpha^2}{1-2\alpha+\alpha^2}\right) = -\frac{-23,000 \text{ J/mol}}{8.314 \text{ J/K/mol} \cdot 298.15 \text{ K}} = 9.28$. Next, take the exponential of both sides: $\left(\frac{\alpha^2}{1-2\alpha+\alpha^2}\right) = e^{9.28} = 1.07 \times 10^4$. Next, you have to simplify it: $\alpha^2 = 1.07 \times 10^4 \cdot (1-2\alpha+\alpha^2)$ and therefore: $(1-1.07 \times 10^4)\alpha^2 + 2 \cdot 1.07 \times 10^4 \alpha - 1.07 \times 10^4 = 0$ Use the quadratic equation $\frac{-B - \sqrt{B^2 - 4AC}}{2A}$ makes $\alpha = 1.0097$, which is impossible. Therefore the correct one is $\frac{-B + \sqrt{B^2 - 4AC}}{2A}$, which makes $\alpha = 0.99$.