Question: If the reaction: $\mathrm{A}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{~B}_{(\mathrm{g})}$ has a $\Delta \mathrm{G}^{\circ}=0 \mathrm{~J}$, what is $\Delta \mathrm{G}, \mathrm{K}$, and the extent of the reaction at equilibrium if $\mathrm{T}=298 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{bar}$?

Answer: First, at equilibrium $\Delta \mathrm{G}=0 \mathrm{~J}$ by definition.
Now we calculate K from $\Delta G=\Delta G^{\circ}+R T \cdot \ln (K)$, where all the G's are 0 J :
$0 \mathrm{~J}=0 \mathrm{~J}+\mathrm{RT} \cdot \ln (\mathrm{K})$ or $\exp (0 \mathrm{~J} / \mathrm{RT})=\mathrm{K}$, making $\mathrm{K}=1$ (no units).
Now for the extent of the reaction: First make a table according to the reaction as so:

	A	B
Amount at equilibrium	$\mathrm{n}-\mathrm{n} \cdot \alpha$	$2 \mathrm{n} \cdot \alpha$
Mole fractions	$\frac{1-\alpha}{1+\alpha}$	$\frac{2 \alpha}{1+\alpha}$
Partial pressures	$\frac{1-\alpha}{1+\alpha} \cdot \mathrm{P}$	$\frac{2 \alpha}{1+\alpha} \cdot \mathrm{P}$

where α (the extent of the reaction) represents the loss of A. Note the total number of moles, regardless of the extent of the reaction, is $n-n \cdot \alpha+2 \alpha \cdot n=n+n \cdot \alpha$. This makes the mole fraction for $\mathrm{A}=\frac{(1-\alpha) \mathrm{n}}{(1+\alpha) \mathrm{n}}=\frac{1-\alpha}{1+\alpha}$; the mole fraction of B is found in a similar manner. The partial pressures are then the mole fractions times the total pressure P .
Now at equilibrium $K=\prod_{\mathrm{i}}\left(\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}^{\circ}}\right)^{\mathrm{v}_{\mathrm{i}}}$ where P_{i} is the partial pressure of species i. As usual, P° is just 1 bar.
K is now: $\frac{\left(\frac{2 \alpha}{1+\alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)^{2}}{\left(\frac{1-\alpha}{1+\alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)}$
Simplification gives: $K=\left(\frac{2 \alpha}{1+\alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)^{2}\left(\frac{1+\alpha}{1-\alpha} \cdot \frac{\mathrm{P}^{\circ}}{\mathrm{P}}\right)=\frac{4 \alpha^{2}}{(1+\alpha)(1-\alpha)}\left(\frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)$
The neat trick is that since the pure partial pressures and total pressures are all 1 bar , all the pressures disappear:
$K=\frac{4 \alpha^{2}}{(1+\alpha)(1-\alpha)}$
Now since $\mathrm{K}=1$, all we have to do is solve for α :
$\frac{4 \alpha^{2}}{(1+\alpha)(1-\alpha)}=\frac{4 \alpha^{2}}{1-\alpha^{2}}=1$
Therefore: $1-\alpha^{2}=4 \alpha^{2}$ or $1=5 \alpha^{2}$, which makes $\alpha=0.447$ or 44.7%. Try this yourself: if the reaction was $\mathrm{A}_{(\mathrm{g})} \leftrightarrow \mathrm{B}_{(\mathrm{g})}$, then you would have calculated $\alpha=0.5$.

Question: At 1 bar of pressure and at 2233 K , water has dissociated by 0.0343% at equilibrium via:
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$. What is $\mathrm{K}, \Delta \mathrm{G}, \Delta \mathrm{G}^{\circ}$?
What is $\Delta \mathrm{G}, \mathrm{K}$, and $\Delta \mathrm{G}^{\circ}$ for this reaction at equilibrium? Hint: since water has dissociated so little, then the percent retained of the 2 moles of water is: $(100 \%-0.0343 \%)=99.9657 \%$

Answer: First, at equilibrium $\Delta \mathrm{G}=0 \mathrm{~J}$ by definition.
Now first we calculate K and then ΔG°.
If you calculated everything according to the formula:
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$.
First, make a table expressing changes in mass:

	H_{2}	O_{2}	$\mathrm{H}_{2} \mathrm{O}$
Amount at equilibrium	$2 \mathrm{n}-2 \mathrm{n} \cdot \alpha$	$\mathrm{n}-\alpha \cdot \mathrm{n}$	$2 \mathrm{n} \cdot \alpha$
Mole fractions	$\frac{2-2 \alpha}{3-\alpha}$	$\frac{1-\alpha}{3-\alpha}$	$\frac{2 \alpha}{3-\alpha}$
Partial pressures	$\frac{2-2 \alpha}{3-\alpha} \cdot \mathrm{P}$	$\frac{1-\alpha}{3-\alpha} \cdot \mathrm{P}$	$\frac{2 \alpha}{3-\alpha} \cdot \mathrm{P}$

where α represents the loss of water. Note the total number of moles, regardless of the extent of the reaction, is $2 n-2 n \cdot \alpha+n-\alpha \cdot n+2 \alpha \cdot n=3 n-n \cdot \alpha$. This makes the mole fraction for water $=$ $\frac{2 n \alpha}{(3-\alpha) n}=\frac{2 \alpha}{3-\alpha}$; the other mole fractions are found in a similar manner. The partial pressures are then the mole fractions times the total pressure P .
Now at equilibrium $\mathrm{K}=\prod_{\mathrm{i}}\left(\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}^{\circ}}\right)^{\mathrm{v}_{\mathrm{i}}}$ where P_{i} is the partial pressure of species i. As usual, P° is just 1 bar.
K is now: $\left.\frac{\left(\frac{2 \alpha}{3-\alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)^{2}}{(2-2 \alpha \mathrm{P}}\right)^{2} \cdot \frac{1}{}$

$$
\overline{\left(\frac{2-2 \alpha}{3-\alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)^{2} \cdot\left(\frac{1-\alpha}{3-\alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)}
$$

Simplification gives: $\mathrm{K}=\left(\frac{2 \alpha}{3-\alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)^{2}\left(\frac{3-\alpha}{2-2 \alpha} \cdot \frac{\mathrm{P}^{\mathrm{o}}}{\mathrm{P}}\right)^{2}\left(\frac{3-\alpha}{1-\alpha} \cdot \frac{\mathrm{P}^{\circ}}{\mathrm{P}}\right)=\frac{4 \alpha^{2}(3-\alpha)}{(1-\alpha)(2-2 \alpha)^{2}}\left(\frac{\mathrm{P}^{\mathrm{o}}}{\mathrm{P}}\right)^{2}$
The neat trick is that since the pure partial pressures and total pressures are all 1 bar, all the pressures disappear:
$\mathrm{K}=\frac{4 \alpha^{2}(3-\alpha)}{(1-\alpha)(2-2 \alpha)^{2}}$
Now since the reaction has gone to 0.0343% completion, then $\alpha=0.999657$ (note how this makes the number of moles of water close to 2 moles, which makes sense), you find :
$\mathrm{K}=4.9536 \times 10^{10}$.
Last is $\Delta \mathrm{G}^{\circ}$, due to the relationship $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \cdot \ln (\mathrm{K})$, we know that:
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \cdot \ln (\mathrm{K})=-8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol} \times 2233 \mathrm{~K} \times \ln \left(4.9536 \times 10^{10}\right)=-4.572 \times 10^{5} \mathrm{~J} / \mathrm{mol}=$ $-457.2 \mathrm{~kJ} / \mathrm{mol}$.

Note a neat little fact- this reaction represents forming two moles of gas-phase water from its elements. If I look up $\Delta \mathrm{G}^{\circ}$ from the table, I see it is $-228.6 \mathrm{~kJ} / \mathrm{mol}$, which represents the Gibb's energy to form one mole of gas phase water. Thus forming two moles would be: $2 \times-228.6 \mathrm{~kJ} / \mathrm{mol}=-457.2 \mathrm{~kJ} / \mathrm{mol}$, the same number!

Note that if I had written the equation:

$\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$.
Then the table would have looked like:

	H_{2}	O_{2}	$\mathrm{H}_{2} \mathrm{O}$
Amount at equilibrium	$\mathrm{n}-\mathrm{n} \cdot \alpha$	$1 / 2(\mathrm{n}-\alpha \cdot \mathrm{n})$	$\mathrm{n} \cdot \alpha$
Mole fractions	$\frac{1-\alpha}{1.5-0.5 \alpha}$	$\frac{0.5-0.5 \alpha}{1.5-0.5 \alpha}$	$\frac{\alpha}{1.5-0.5 \alpha}$
Partial pressures	$\frac{1-\alpha}{1.5-0.5 \alpha} \cdot \mathrm{P}$	$\frac{0.5-0.5 \alpha}{1.5-0.5 \alpha} \cdot \mathrm{P}$	$\frac{\alpha}{1.5-0.5 \alpha} \cdot \mathrm{P}$

Do the algebra, and you will see that:
K is now: $\frac{\left(\frac{\alpha}{1.5-0.5 \alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)}{\left(\frac{0.5-0.5 \alpha}{1.5-0.5 \alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)^{1 / 2} \cdot\left(\frac{1-\alpha}{1.5-0.5 \alpha} \cdot \frac{\mathrm{P}}{\mathrm{P}^{0}}\right)}$
Simplification gives: $K=\left(\frac{\alpha}{1.5-0.5 \alpha} \cdot \frac{P}{P^{\circ}}\right)\left(\frac{1.5-0.5 \alpha}{0.5-0.5 \alpha} \cdot \frac{\mathrm{P}^{\circ}}{\mathrm{P}}\right)^{1 / 2}\left(\frac{1.5-0.5 \alpha}{1-\alpha} \cdot \frac{\mathrm{P}^{\circ}}{\mathrm{P}}\right)=\frac{\sqrt{2} \cdot \alpha(1.5-0.5 \alpha)^{1 / 2}}{(1-\alpha)(1-\alpha)^{1 / 2}}$
Now when you plug in $\alpha=0.999657$ as before, you find $K=2.2257 \times 10^{5}$.
Last: $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \cdot \ln (\mathrm{K})=-8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol} \times 2233 \mathrm{~K} \times \ln \left(2.2257 \times 10^{5}\right)=-2.286 \times 10^{5} \mathrm{~J} / \mathrm{mol}=$ $-228.6 \mathrm{~kJ} / \mathrm{mol}$, which is the same as $\Delta \mathrm{G}^{\circ}$ from the table for forming 1 mole of water vapor.

Question: I looked up that $\Delta \mathrm{G}^{\circ}$ is $-23.0 \mathrm{~kJ} / \mathrm{mol}$ for the following reaction:
$\mathrm{ClNO}_{2}(g)+\mathrm{NO}(g) \leftrightarrow \mathrm{NO}_{2}(g)+\mathrm{ClNO}(g)$
How much has this reaction proceeded if you start with n moles of both reactants, assuming the pressure is 1 bar and let's say temperature is $25^{\circ} \mathrm{C}$?
Here is a hint: starting with the normal table:

	ClNO_{2}	NO	NO_{2}	ClNO
Amount at equilibrium	$\mathrm{n} \cdot(1-\alpha)$	$\mathrm{n} \cdot(1-\alpha)$	$\mathrm{n} \cdot \alpha$	$\mathrm{n} \cdot \alpha$
Mole fractions	$\frac{\mathrm{n} \cdot(1-\alpha)}{2 \mathrm{n}}$	$\frac{\mathrm{n} \cdot(1-\alpha)}{2 \mathrm{n}}$	$\frac{\mathrm{n} \cdot \alpha}{2 \mathrm{n}}$	$\frac{\mathrm{n} \cdot \alpha}{2 \mathrm{n}}$
Partial pressures	$\frac{(1-\alpha)}{2} \cdot \mathrm{P}$	$\frac{(1-\alpha)}{2} \cdot \mathrm{P}$	$\frac{\alpha}{2} \cdot \mathrm{P}$	$\frac{\alpha}{2} \cdot \mathrm{P}$

where α represents the extent of the reaction. Note the total number of moles, regardless of the extent of the reaction, is 2 n . Now at equilibrium $\mathrm{K}=\prod_{\mathrm{i}} \frac{\mathrm{P}_{\mathrm{i}}^{\mathrm{v}_{\mathrm{i}}}}{\mathrm{P}^{\mathrm{ov}_{\mathrm{i}}}}$, where P_{i} is the partial pressure of species i. As usual, P° is just 1 bar. K is now: $\frac{\left(\frac{\alpha}{2} \cdot \frac{P}{P^{\circ}}\right) \cdot\left(\frac{\alpha}{2} \cdot \frac{P}{P^{\circ}}\right)}{\left(\frac{(1-\alpha)}{2} \cdot \frac{P}{P^{\circ}}\right) \cdot\left(\frac{(1-\alpha)}{2} \cdot \frac{P}{P^{\circ}}\right)}$. Simplification gives: $\left(\frac{2}{(1-\alpha)} \cdot \frac{\mathrm{P}^{\circ}}{\mathrm{P}}\right) \cdot\left(\frac{2}{(1-\alpha)} \cdot \frac{\mathrm{P}^{\circ}}{\mathrm{P}}\right) \cdot\left(\frac{\alpha}{2} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right) \cdot\left(\frac{\alpha}{2} \cdot \frac{\mathrm{P}}{\mathrm{P}^{\circ}}\right)=\left(\frac{4}{(1-\alpha)^{2}}\right) \cdot\left(\frac{\alpha^{2}}{4} \cdot\right)=\frac{\alpha^{2}}{(1-\alpha)^{2}}=\frac{\alpha^{2}}{1-2 \alpha+\alpha^{2}}$. Now when you plug this into the expression for the Gibbs energy at equilibrium: $\ln \left(\frac{\alpha^{2}}{1-2 \alpha+\alpha^{2}}\right)=\frac{-\Delta G^{\circ}}{R \cdot T}$, you can solve for α. Hint hint: if $A \alpha^{2}+B \alpha+C=0$, then the two possible values of α are:
$\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}$ or $\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}$.

Answer: Starting with: $\ln \left(\frac{\alpha^{2}}{1-2 \alpha+\alpha^{2}}\right)=\frac{-\Delta \mathrm{G}^{\circ}}{\mathrm{R} \cdot \mathrm{T}}$, plug in everything we know:
$\ln \left(\frac{\alpha^{2}}{1-2 \alpha+\alpha^{2}}\right)=-\frac{-23,000 \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol} \cdot 298.15 \mathrm{~K}}=9.28$. Next, take the exponential of both sides:
$\left(\frac{\alpha^{2}}{1-2 \alpha+\alpha^{2}}\right)=\mathrm{e}^{9.28}=1.07 \times 10^{4}$. Next, you have to simplify it: $\alpha^{2}=1.07 \times 10^{4} \cdot\left(1-2 \alpha+\alpha^{2}\right)$ and therefore: $\left(1-1.07 \times 10^{4}\right) \alpha^{2}+2 \cdot 1.07 \times 10^{4} \alpha-1.07 \times 10^{4}=0$
Use the quadratic equation $\frac{-B-\sqrt{B^{2}-4 A C}}{2 \mathrm{~A}}$ makes $\alpha=1.0097$, which is impossible. Therefore the correct one is $\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}$, which makes $\alpha=0.99$.

