Exact vs Inexact Differnetial

For a function $f(x, y)=x \cdot y$ the partial of f with respect to x and y is
$\partial f(x, y)=\frac{\partial f}{\partial x} \partial x+\frac{\partial f}{\partial y} \partial y$
This is valid since I made no assumption whether x or y can change.
Since taking the derivative of $f(x, y)$ is easy I can insert into the above:
$\partial f(x, y)=y \cdot \partial x+x \cdot \partial y$
Now for the change of $f(x, y)$ from $(x, y)=1,1$ to $(x, y)=2,2$ as per this diagram:

Path 1 + Path 2

Lets do Path $1+$ Path 2 and compare to Path 3. Since I have partials I need to integrate:
$\Delta f_{1}(x, y)=\int_{x=1}^{x=1} y \cdot \partial x+\int_{y=1}^{y=2} x \cdot \partial y$
The first term is $y \cdot(1-1)=0$ and the second is (since $x=1) 1 \cdot(2-1)=1$.
Now for path two
$\Delta f_{2}(x, y)=\int_{x=1}^{x=2} y \cdot \partial x+\int_{y=2}^{y=2} x \cdot \partial y$

Since $y=2$ the first term is $2 \cdot(2-1)=2$ and the second is $x \cdot(2-2)=0$. So the total is $\Delta f_{1+2}=3$.

Path 3

Lets do Path $1+$ Path 2 and compare to Path 3 . Since I have partials I need to integrate:

$$
\Delta f_{3}(x, y)=\int_{x=y=1}^{x=y=2} y \cdot \partial x+\int_{x=y=1}^{x=y=2} x \cdot \partial y
$$

The trick here is to recognize that since $\mathrm{x}=\mathrm{y}$ you can replace every y with x and reduce this to:

$$
\left.\Delta f_{3}(x, y)=\int_{x=1}^{x=2} x \cdot \partial x+\int_{x=1}^{x=2} x \cdot \partial x=\int_{x=1}^{x=2} 2 \cdot x \cdot \partial x=x^{2}\right]_{1}^{2}=(4-1)=3
$$

In both cases $\Delta \mathrm{f}=3$ so $\partial f(x, y)=y \cdot \partial x+x \cdot \partial y$ is an exact differential. This is a given since I had a functional form for $\mathrm{f}(\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x} \cdot \mathrm{y})$ in the first place.

Inexact Differentials

In the case of $\partial f(x, y)=y \cdot \partial x$, which as I said in class is like force times distance, we can work the change in f as before:

Path 1 + Path 2

Lets do Path $1+$ Path 2 and compare to Path 3. Since I have partials I need to integrate:
$\Delta f_{1}(x, y)=\int_{x=1}^{x=1} y \cdot \partial x+\int_{y=1}^{y=2} 0 \cdot \partial y$
The first term is $\mathrm{y} \cdot(1-1)=0$ and the second is $0 \cdot(2-1)=0$.
Now for path two
$\Delta f_{2}(x, y)=\int_{x=1}^{x=2} y \cdot \partial x+\int_{y=2}^{y=2} 0 \cdot \partial y$
Since $y=2$ the first term is $2 \cdot(2-1)=2$ and the second is $0 \cdot(2-2)=0$. So the total is $\Delta f_{1+2}=2+0=2$.

Path 3

Lets do Path $1+$ Path 2 and compare to Path 3 . Since I have partials I need to integrate:

$$
\Delta f_{3}(x, y)=\int_{x=y=1}^{x=y=2} y \cdot \partial x+\int_{x=y=1}^{x=y=2} 0 \cdot \partial y
$$

Again using the same $\mathrm{x}=\mathrm{y}$ trick:
$\left.\Delta f_{3}(x, y)=\int_{x=1}^{x=2} x \cdot \partial x+\int_{x=1}^{x=2} 0 \cdot \partial x=\int_{x=1}^{x=2} x \cdot \partial x=\frac{1}{2} x^{2}\right]_{1}^{2}=\frac{1}{2}(4-1)=\frac{3}{2}$
Hence $\partial f(x, y)=y \cdot \partial x$ is an inexact differential, and you should not be able to find a functional form for $\mathrm{f}(\mathrm{x}, \mathrm{y})$ for which the partial derivative is $\mathrm{y} \cdot \delta \mathrm{x}$. Thus the change in $f(x, y)$ does depend on the path taken which is why work ($w=-F \cdot \delta x$) and thermal energy $(\mathrm{q}=\mathrm{n} \cdot \mathrm{Cv} \cdot \delta \mathrm{T})$ are also inexact quantities.

Euler Criteria

Euler (pronounced oiler!) stated that for a differential $\partial f(x, y)=\frac{\partial f}{\partial x} \partial x+\frac{\partial f}{\partial y} \partial y$ to be exact then:
$\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y}$
This just says when taking the derivative of an exact function with respect to the variables, it doesn't matter which order you do the operations. In the case of $f(P, V)=P \cdot V$, we get:
$\frac{\partial}{\partial V} \frac{\partial(P \cdot V)}{\partial P}=\frac{\partial}{\partial P} \frac{\partial(P \cdot V)}{\partial V}$
$\frac{\partial}{\partial V} V=\frac{\partial}{\partial P} P$
$1=1$

So yes $\mathrm{P} \cdot \mathrm{V}$ is an exact function.

