
Exact vs Inexact Differnetial 
 
For a function f(x,y) = x·y the partial of f with respect to x and y is 
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This is valid since I made no assumption whether x or y can change. 
Since taking the derivative of f(x,y) is easy I can insert into the 
above: 
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Now for the change of f(x,y) from (x,y)=1,1 to (x,y)= 2,2 as 
per this diagram: 
 
Path 1 + Path 2 
 
Lets do Path 1 + Path 2 and compare to Path 3. Since I have partials I need to integrate: 
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The first term is y·(1-1)=0 and the second is (since x=1) 1·(2-1)=1.  
Now for path two 
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Since y=2 the first term is 2·(2-1)=2 and the second is x·(2-2)=0. So the total is Δf1+2=3. 
 
Path 3 
Lets do Path 1 + Path 2 and compare to Path 3. Since I have partials I need to integrate: 
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The trick here is to recognize that since x = y you can replace every y with x and reduce 
this to: 
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In both cases Δf=3 so yxxyyxf ∂⋅+∂⋅=∂ ),(  is an exact differential. This is a given 
since I had a functional form for f (f(x,y)=x·y) in the first place. 
 
Inexact Differentials 
 
In the case of xyyxf ∂⋅=∂ ),( , which as I said in class is like force times distance, we 
can work the change in f as before: 
 
Path 1 + Path 2 
 
Lets do Path 1 + Path 2 and compare to Path 3. Since I have partials I need to integrate: 
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The first term is y·(1-1)=0 and the second is 0·(2-1)=0.  
Now for path two 
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Since y=2 the first term is 2· (2-1)=2 and the second is 0·(2-2)=0. So the total is 
Δf1+2=2+0=2. 
 
Path 3 
 
Lets do Path 1 + Path 2 and compare to Path 3. Since I have partials I need to integrate: 
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Again using the same x = y trick: 
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Hence xyyxf ∂⋅=∂ ),(  is an inexact differential, and you should not be able to find a 
functional form for f(x,y) for which the partial derivative is y·δx. Thus the change in 
f(x,y) does depend on the path taken which is why work (w=-F·δx) and thermal energy 
(q=n·Cv·δT) are also inexact quantities. 
 



Euler Criteria 
 

Euler (pronounced oiler!) stated that for a differential y
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exact then: 
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This just says when taking the derivative of an exact function with respect to the 
variables, it doesn’t matter which order you do the operations. In the case of f(P,V)=P·V, 
we get: 
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So yes P·V is an exact function. 


