Thermo Cheat Sheet (early class))

All systems are closed ($\Delta n=0$ mol)

In General: Work is defined as:

$$\partial \mathbf{w} = -\mathbf{P}_{\text{ext}} \cdot \partial \mathbf{V}$$

and ∂q is the heat transaction between the exterior and interior.

Heat Capacities:

 $C = \frac{\partial q}{\partial T}$ At constant volume: $\partial U = \partial q$ (no work is done) and thus:

$$C_{V} = \frac{\partial q}{\partial T} \Big|_{V} = \frac{\partial U}{\partial T} \Big|_{V}$$

At constant pressure: $\partial H = \partial q$ and thus $C_{P} = \frac{\partial q}{\partial T} \Big|_{P} = \frac{\partial H}{\partial T} \Big|_{P}$

State functions, the changes of which are exact, have the same equations for each of the four types of transitions.

The Equipartition Theorem: Since $U = \frac{1}{2}RT \cdot degrees$ of freedom, then: $\partial U = \partial w + \partial q = C_V \cdot \partial T$

also

$$\partial U = -P \partial V + T \partial S$$

The Legendre transform of internal energy to remove the volume dependence is enthalpy H(P,S) = U + PV:

$$\partial H = \partial U + \partial (PV) = C_V \cdot \partial T + nR \cdot \partial T = C_P \cdot \partial T$$

also

$$\partial H = V \partial P + T \partial S$$

The Legendre transform of internal energy to remove the entropy dependence is the Helmholtz energy A(T, V) = U - TS:

 $\partial A = \partial U - \partial (TS) = -P \partial V - S \partial T$

The Legendre transform of internal energy to remove the entropy and volume dependence is Gibbs energy G(T, P) = U + PV - TS:

$$\partial G = \partial U + \partial (PV) - \partial (TS) = V \partial P - S \partial T$$

The change in entropy is:

$$\Delta S = n \cdot C_{V,m} \cdot ln\left(\frac{T_f}{T_i}\right) + nT \cdot ln\left(\frac{V_f}{V_i}\right)$$

Maxwell Equations:

$$\partial U = -P \partial V + T \partial S \text{ therefore} \qquad \frac{\partial T}{\partial V}_{S} = -\frac{\partial P}{\partial S}_{V} \\ \partial H = V \partial P + T \partial S \text{ therefore} \qquad \frac{\partial T}{\partial P}_{S} = \frac{\partial V}{\partial S}_{P} \\ \partial A = -P \partial V - S \partial T \text{ therefore} \qquad \frac{\partial S}{\partial V}_{T} = \frac{\partial P}{\partial T}_{V} \\ \partial G = V \partial P - S \partial T \text{ therefore} \qquad -\frac{\partial S}{\partial P}_{T} = \frac{\partial V}{\partial T}_{P}$$

Isothermal Reversible and Irreversible:

For all isothermal transitions ($\partial T = 0$ K):

 $\partial U = \partial H = 0 J$

for the reasons expressed above. Since $\partial U = \partial w + \partial q$, then $\partial q = -\partial w$. $\partial A = -P \partial V$ which is the reversible work. $\partial G = V \partial P$, which oddly can be shown to be the same as reversible work.

Adiabatic Reversible and Irreversible: Neither P, V nor T are constant!

$$\partial q = 0 J$$

 $\Delta S_{\text{ext}} = 0 \frac{J}{K}$

Irreversible: Since $\partial U = \partial w = C_V \cdot \partial T$, then

$$C_V \cdot \Delta T = -P_{ext} \cdot \Delta V$$

This gives the change in temperature, and you can then calculate:

$$\Delta U = \Delta w = C_V \cdot \Delta T$$

Also $\Delta H = C_P \cdot \Delta T$. After solving all the thermodynamic variables, usually starting with ΔT , you calculate the change in system entropy using:

$$\Delta S_{\text{tot}} = \Delta S = n \cdot C_{V,m} \cdot \ln\left(\frac{T_f}{T_i}\right) + nT \cdot \ln\left(\frac{V_f}{V_i}\right)$$

As for $\partial A = \partial U - \partial (TS)$ and $\partial G = \partial H - \partial (TS)$, we run into the problem that $\partial (TS)$ is very difficult to determine as both T and S are changing simultaneously.

Reversible: Since $P_{ext} = P$ then $C_V \partial T = -P \cdot \partial V = -\frac{nRT}{V} \cdot \partial V$, from here we derive the adiabatic equations of state:

$$\left(\frac{T_{f}}{T_{i}}\right) = \left(\frac{V_{i}}{V_{f}}\right)^{\frac{nR}{C_{v}}}$$
 or $\left(\frac{P_{i}}{P_{f}}\right) = \left(\frac{V_{f}}{V_{i}}\right)^{\frac{C_{p}}{C_{v}}}$

With the change in temperature one can calculate $\Delta U = \Delta w = C_V \cdot \Delta T$ and $\Delta H = C_P \cdot \Delta T$. Also $\Delta S = 0 \frac{J}{\kappa}$, $\Delta S_{tot} = 0 \frac{J}{\kappa}$

As for $\partial A = \partial U - \partial (TS) = C_V \cdot \partial T - S \partial T$ and $\partial G = C_P \cdot \partial T - S \partial T$, while this is easier than the irreversible situation since $\Delta S = 0 \frac{J}{K}$, regardless, we need to know the absolute entropy of the gas in the cylinder. Furthermore, entropy is still a function of T, so integration of S ∂T is nonetheless still complex. Generally we are not concerned with calculating ∂A or ∂G for these types of transitions.