## Adiabatic Changes of State

Starting with:

$$
\mathrm{C}_{\mathrm{v}} \partial \mathrm{~T}=-\mathrm{P} \partial \mathrm{~V}
$$

Since $P V=n R T$ and thus $P=\frac{n R T}{V}$, we find that the above changes to:

$$
\frac{\mathrm{C}_{\mathrm{v}} \partial \mathrm{~T}}{\mathrm{~T}}=\frac{-\mathrm{nR} \partial \mathrm{~V}}{\mathrm{~V}}
$$

Now we integrate:

$$
\int_{T_{i}}^{T_{f}} \frac{C_{v}}{T} \partial T=\int_{V_{i}}^{V_{f}} \frac{-n R}{V} \partial V
$$

The integration yields:

$$
\mathrm{C}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{~T}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{i}}}\right)=-\mathrm{nR} \cdot \ln \left(\frac{\mathrm{~V}_{\mathrm{f}}}{\mathrm{~V}_{\mathrm{i}}}\right)
$$

Since $\ln \left(\frac{x}{y}\right)=-\ln \left(\frac{y}{x}\right)$ and with a little rearrangement:

$$
\frac{C_{\mathrm{v}}}{\mathrm{nR}} \cdot \ln \left(\frac{\mathrm{~T}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{i}}}\right)=\ln \left(\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{f}}}\right)
$$

Last identity is a $\cdot \ln (\mathrm{x})=\ln \left(\mathrm{x}^{\mathrm{a}}\right)$

$$
\ln \left[\left(\frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}\right)^{\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{nR}}}\right]=\ln \left(\frac{V_{\mathrm{i}}}{V_{\mathrm{f}}}\right)
$$

Taking the exponential of both sides gives:

$$
\begin{equation*}
\left(\frac{T_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{i}}}\right)^{\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{nV}}}=\left(\frac{V_{\mathrm{i}}}{V_{\mathrm{f}}}\right) \tag{1}
\end{equation*}
$$

It's easy to show that this is equal to $\left(\frac{T_{f}}{T_{i}}\right)=\left(\frac{V_{i}}{V_{f}}\right)^{\frac{n R}{C_{v}}}$.

Let's get to pressure next; since $C_{p}-C_{v}=n R$ :

$$
\left(\frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}\right)^{\frac{C_{\mathrm{v}}}{C_{\mathrm{p}}-C_{\mathrm{v}}}}=\left(\frac{V_{\mathrm{i}}}{V_{\mathrm{f}}}\right)
$$

One other identity: $a^{x}=b$ then $a=b^{1 / x}$ and substitution leads to:

$$
\left(\frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}\right)=\left(\frac{\mathrm{V}_{\mathrm{i}}}{V_{\mathrm{f}}}\right)^{\frac{\mathrm{C}_{\mathrm{p}}}{C_{\mathrm{v}}}-1}
$$

Last, recognize that

$$
\left(\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{i}}}\right)=\left(\frac{\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}}{\mathrm{P}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}}\right)
$$

Plug this in above and rearrange the volumes:

$$
\left(\frac{P_{\mathrm{f}}}{\mathrm{P}_{\mathrm{i}}}\right)=\left(\frac{\mathrm{V}_{\mathrm{i}}}{V_{\mathrm{f}}}\right)\left(\frac{V_{\mathrm{i}}}{V_{\mathrm{f}}}\right)^{\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}-1}
$$

Remember that $x \cdot x^{n}=x^{n+1}$

$$
\left(\frac{P_{f}}{P_{i}}\right)=\left(\frac{V_{i}}{V_{f}}\right)^{\frac{C_{p}}{C_{v}}}
$$

Here are a few others that can also be derived using the identities given above:

$$
\left(\frac{P_{i}}{P_{f}}\right)=\left(\frac{V_{f}}{V_{i}}\right)^{\frac{C_{p}}{C_{v}}} \quad\left(\frac{P_{i}}{P_{f}}\right)^{\frac{C_{v}}{C_{p}}}=\left(\frac{V_{f}}{V_{i}}\right) \quad\left(\frac{T_{i}}{T_{f}}\right)=\left(\frac{V_{f}}{V_{i}}\right)^{\frac{C_{p}}{C_{v}}-1}
$$

